
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 23: The Clifford group
April 17, 2024

Lecturer: John Wright Scribe: Thilo Scharnhorst

Last time we finished our series on increasingly good, but also increasingly difficult to under-
stand, quantum error correction codes. And then we saw almost the full proof that quantum
Tanner codes give good qLDPC codes.
Today we are going to move on to another main topic of the course, which is Fault Tolerance.
So now the setting is that we have all these good quantum codes and we ask ourselves how
we use them for computation so that it is resilient to noise.
This series of lectures follows the video lectures by Daniel Gottesman online [DG18]. His
lecture notes are also available online [Got09].

We start by looking at a set of unitary gates that is very important for fault tolerance and
is know as the Clifford group.

1 The Clifford Group

Recall:

• Paulin = {±P1 ⊗ . . .⊗ Pn,±iP1 ⊗ . . .⊗ Pn, Pi ∈ {I,X, Y, Z}}

• S = ⟨g1, . . . , gn−k⟩ is a stabilizer group under the conditions that the gi’s are inde-
pendent and commute and −I /∈ S. Then S gives a stabilizer code of dimension
k.

• A stabilizer state is the unique state (up to phase) stabilized by

S = ⟨g1, · · · , gn⟩ i.e. gi|χ⟩ = |χ⟩ ∀i

E.g. |00 . . . 0⟩ has the stabilizers S = {Z1, . . . , Zn} (Consisting of all Pauli Z’s).
The state is also the unique state in the stabilizer space (up to phase, for instance
-|00 . . . 0⟩ is also stabilized by these). If we have n Pauli gates and they all commute
and are independent then there is always one state that is specified by them.

The main topic of today’s lecture is going to be the Clifford group.

Definition 1.1 (The Clifford Group).
The Clifford group Cliffn is

Cliffn = {U : UPU † ∈ Paulin,∀P ∈ Paulin}

1

The following gates are all in the Clifford group:

• Paulin ⊆ Cliffn:
P ∈ Paulin : PQP † = PQP = ±PPQ = ±Q

• eiθ · I ∈ Cliffn

• Hadamard H:
HXH = Z, HZH = X, HYH = HiXZH = i(HXH)(HZH) = iZX = −Y
(it would actually suffice to show this just for X and Z, as Y is a product of both)

• Phase gate S =

[
1 0
0 i

]
:

SZS† = SS†Z = Z

SXS† =

[
1 0
0 i

] [
0 1
1 0

] [
1 0
0 −i

]
=

[
0 1
i 0

] [
1 0
0 −i

]
=

[
0 −i
i 0

]
= Y

SY S† = −X (we could also deduce it from X and Z again)

• CNOT gate:
It suffices to look at the following 4 Pauli strings as any Pauli string can be written
as a product of them:

1. CNOT (X ⊗ I)CNOT = X ⊗X
(we see this via seeing how it acts on a state |a, b⟩:
|a, b⟩ → CNOT |a, a+ b⟩ → X ⊗ I |a+ 1, a+ b⟩ → CNOT |a+ 1, b+ 1⟩)

2. CNOT (I ⊗X)CNOT = I ⊗X

3. CNOT (Z ⊗ I)CNOT = Z ⊗ I

4. CNOT (I ⊗ Z)CNOT = Z ⊗ Z
(we again see this via seeing how it acts on a state |a, b⟩:
|a, b⟩ → CNOT |a, a+ b⟩ → I ⊗ Z(−1)a+b |a, a+ b⟩ → CNOT(−1)a+b |a, b⟩ =
Z ⊗ Z |a, b⟩)

The Clifford group is actually the group that is generated by this set of one- and two-qubit
gates. If I just have access to these one- and two-qubit gates then I can generate any gate
in the Clifford group. We will see in the next lecture why we care about the Clifford group.
In short, when I want to make a computation fault tolerant, what I want to do is take my
qubits and encode them into an error correcting code. But I don’t want them to just be
resistant to noise, I also want to be able to perform computations on my encoded qubits.
Because you cannot simulate a circuit without being able to compute on the qubits of the
circuit. So you might ask what sort of gates am I allowed to apply to my encoded qubits. It
turns out that for many error correcting codes we will look at, the natural gates that you are
able to apply correspond to Clifford operations. We are going to see this more next lecture,
but if I have an encoded state and I can apply Pauli gates, Hadamard gates, Phase gates

2

and CNOT gates, the question is how powerful this is. Can I use these gates to compute any
gates that I want, or is this a restricted gate set. And if this is a restricted gate set, how do
I get access to more general gates?
Let’s prove a little fact about the Clifford group (i.e. that it is indeed a group).

Fact 1.2. Cliffn is a group.

Proof.

• I ∈ Cliffn

• U, V ∈ Cliffn ⇒ UV ∈ Cliffn

as UV P (UV)† = U(V PV †)U † = UQU † = R ∈ Paulin

• U ∈ Cliffn ⇒ U−1 ∈ Cliffn

as UPU † = Q⇒ P = U †QU = U−1Q(U−1)†

(So you just have to check that for every Pauli matrix P there is another Pauli matrix
Q s.t. this is fulfilled. When P ranges over all the Pauli matrices, Q also ranges over
all the Pauli matrices, so conjugating by U is just a permutation of Pauli matrices.)

For U ∈ Cliffn :
h(P) = UPU †

h(I) = I (as well as h(−I) = −I)
h(P)h(Q) = UPU †UQU † = UPQU † = h(PQ)
So h is a group homomorphism (i.e. respects the group’s structure).

= U(±QP)U † = ±UQU †UPU † = ±h(Q)h(P)
where we get the same sign as PQ = ±QP , so not only does h keep the multiplication
structure, but also the commutation structure)

Let’s mention one more fact that follows:

Fact 1.3. It suffices to specify h on the generators (X1, . . . , Xn, Z1, . . . , Zn) of Paulin.

So we only need to specify h on these Pauli matrices to specify U. Now we saw some properties
that h has to satisfy, that essentially are some properties that our matrix U has to satisfy to
be in the Clifford group. So a Clifford group element is going to permute the Pauli matrices
correspondingly. Now the question is whether there are any further restrictions on what our
Clifford group elements are allowed to do.

Theorem 1.4. Let h(·) be a permutation of Paulin that preserves the group multiplication
and commutation relations (i.e. h is a group homomorphism).
Then: ∃ n-qubit unitary U ∈ Cliffn s.t. h(P) = UPU † and U is unique up to global phase.
(If h satisfies the given condition it corresponds to one exact U in Cliffn)

3

Proof. To find the unitary U corresponding to a map h, it suffices to specify the map for the
Zi matrices and also correctly computes the map for the Xi matrices, as follows:

P → h(P) : Zi → h(Zi)

Xi → h(Xi)

h is now specified on what it does on the Zi and Xi. What the problem then reduces to is
to find a unitary U that maps the +1 eigenbasis of Zi to the +1 eigenbasis of h(Zi). This is
because conjugation with U is never going to change the eigenvalues but just the eigenbasis.
Now the all zeros vector is in the +1-eigenbasis of each Zi

|00 . . . 0⟩ = stabilized by ⟨Z1, . . . , Zn⟩

Then:

U |00 . . . 0⟩
= UZi |00 . . . 0⟩
= UZiU

†︸ ︷︷ ︸
h(Zi)

U |00 . . . 0⟩

= h(Zi)U |00 . . . 0⟩ = stabilized by ⟨h(Z1), . . . , h(Zn)⟩

Now picking a phase specifies a unique vector U |00 . . . 0⟩ stabilized by ⟨h(Z1), . . . , h(Zn)⟩

U |10 . . . 0⟩
= UX1 |00 . . . 0⟩
= UXi |00 . . . 0⟩
= UX1U

†︸ ︷︷ ︸
h(X1)

U |00 . . . 0⟩

= h(X1)U |00 . . . 0⟩

And from this it follows:

U |b1, . . . , bn⟩ = h(Xb1
1 , . . . X

bn
n)U |00 . . . 0⟩

Now the only thing left to show is that for a specified choice (of phase) of U |00 . . . 0⟩, all
the U |b1, . . . , bn⟩ for different bi will be orthogonal and thus U unitary. Let’s prove this, by
showing ⟨00 . . . 0|U †U |10 . . . 0⟩ = 0 (all the other inner products work analogously):

4

⟨00 . . . 0|U †U |10 . . . 0⟩ = ⟨00 . . . 0|U †h(X1)U |00 . . . 0⟩
= ⟨00 . . . 0|U † h(X1)h(Z1)︸ ︷︷ ︸

=−h(Z1)h(X1)

U |00 . . . 0⟩

= −⟨00 . . . 0|U †h(Z1)h(X1)U |00 . . . 0⟩
= −⟨00 . . . 0|U † h(X1)U |00 . . . 0⟩︸ ︷︷ ︸

=U |10...0⟩

= −⟨00 . . . 0|U †U |10 . . . 0⟩
= 0

This works for any bi, as we can then just choose one Zi, this shows that U is unitary.
The next thing we have to show is that this unitary actually fulfills h(Zi) = UZiU

† and is
thus the right unitary!

UZiU
†U |b1, . . . , bn⟩ = UZi |b1, . . . , bn⟩

= (−1)biU |b1, . . . , bn⟩

Now let’s compare this with what we get replacing UZiU
† by h(Zi) and we just need to check

that we get the exact same thing:

h(Zi)U |b1, . . . , bn⟩ = h(Zi)U |b1, . . . , bn⟩
= h(Zi)h(X

b1
1 , . . . , X

bn
n)U |00 . . . 0⟩

= (−1)bih(Xb1
1 , . . . , X

bn
n)h(Zi)U |00 . . . 0⟩︸ ︷︷ ︸

U |00...0⟩

= (−1)biU |b1, . . . , bn⟩

So we get the same thing for any bi, which thus shows that indeed h(Zi) = UZiU
†, finalizing

the proof.

Now what is an upper bound on the size of the Clifford group? As seen above one can see a
Clifford group element as a permutation fulfilling the specific commutation relations. This
permutation is very restricted and is already specified by how it acts on the generators of
the Pauli gates. There are 2n generators which can all get mapped to different elements in
Paulin. And as they can only be mapped to the Pauli gates with ±1 phases (not ±i) as the
eigenvalues have to stay the same, there are 2 · 4n Pauli gates which each of the generators
can be mapped to. Thus we get:

5

Fact 1.5.

|Cliffn| ≤ |Paulin|2n (only considering the Pauli gates with real eigenvalues)

= |2 · 4n|2n

= 2(2n+1)·2n (as there are 2n generators each of which has to map to different P ∈ Paulin

where here we only care about the Pauli strings of eigenvalues real 1)

So, it takes 2n(2n+ 1) bits to specify a Clifford, while a general unitary takes ≥ 4n bits to
specify. That is a big difference. So Clifford gates are very easily specified and you can just
write down any Clifford you want. Can they have the full power of Quantum Computation
if there are so few of them?! If all I’m allowed is to implement Clifford gates it seems like we
can’t use that to simulate a general quantum computation.
We will formalise this intuition in the Gottesman-Knill Theorem, which says: If we only use
Clifford gates we can simulate the circuit classically (starting with any stabilizer state, like a
bit string, but we can also just think of |00 . . . 0⟩ for simplicity). Let me give an example of
how we are going to do this, which will contain most of the ingredients of the actual full proof:

Example 1.6. We would like to simulate the action of the following simple circuit, in a way
that generalizes to more complicated Clifford circuits. We are going to do this by keeping
track of the state at each step. As each of those are stabilizer states, they are described by
their n Pauli stabilizers and can thus be specified efficiently.

|0⟩ X

|0⟩

Let us specify the states at each step by calculating its stabilizers:

• step 0: Z ⊗ I, I ⊗ Z

• step 1: XZX ⊗ I = −Z ⊗ I, XIX ⊗ Z = I ⊗ Z

• step 2: CNOT(−Z ⊗ I)CNOT = −Z ⊗ I, CNOT(I ⊗ Z)CNOT = Z ⊗ Z

So, the final state |ψ⟩ is stabilized by −Z ⊗ I and Z ⊗ Z, and thus also by their product
−I ⊗ Z. Therefore −I ⊗ Z |ψ⟩ = |ψ⟩, or equivalently |ψ⟩ is in the +1 eigenspace of −I ⊗ Z,
which is given by −I ⊗ |1⟩ ⟨1|. Thus we know we will always see outcome 1, which is exactly
what we would expect.

Theorem 1.7 (Gottesman-Knill Theorem). Consider a quantum circuit consisting of Clif-
ford gates and Pauli measurements. It is possible to efficiently simulate its behaviour (output
distribution) given the stabilizer state as input. (Even with gates conditioned on measure-
ments)

We will see the proof next time!

6

References

[DG18] Beni Yoshida Daniel Gottesman. Iqc - quantum error correction (lecture videos).
https://pirsa.org/c17045, 2018. Accessed 05/06/24. (document)

[Got09] Daniel Gottesman. An introduction to quantum error correction and fault-tolerant
quantum computation, 2009. (document)

7

	The Clifford Group

